

MECHANICAL VIBRATIONS

Course Name: B.Tech-ME

Semester: 7th

Prepared by: Dr. Talwinder Singh Bedi

- No. of DoF of system = No. of mass elements x number of motion types for each mass
- For each degree of freedom there exists an equation of motion usually coupled differential equations.
- Coupled means that the motion in one coordinate system depends on the other
- If harmonic solution is assumed, the equations produce two natural frequencies and the amplitudes of the two degrees of freedom are related by the natural, principal or normal mode of vibration.
- Under an arbitrary initial disturbance, the system will vibrate freely such that the two normal modes are superimposed.
- Under sustained harmonic excitation, the system will vibrate at the excitation frequency. Resonance occurs if the excitation frequency corresponds to one of the natural frequencies of the system

- Equations of motion
- Consider a viscously damped system:
- Motion of system described by position x₁(t) and x₂(t) of masses m₁ and m₂
- The free-body diagram is used to develop the equations of motion using Newton's second law

Spring k_1 under tension for $+x_1$

Spring k_2 under tension for $+(x_2 - x_1)$ Spring k_3 under compression for $+x_2$

Equations of motion

or

$$m_1\ddot{x}_1 + c_1\dot{x}_1 + k_1x_1 - c_2(\dot{x}_2 - \dot{x}_1) - k_2(x_2 - x_1) = F_1$$

$$m_2\ddot{x}_2 + c_2(\dot{x}_2 - \dot{x}_1) + k_2(x_2 - x_1) + c_3\dot{x}_2 + k_3x_2 = F_2$$

$$\begin{split} m_1\ddot{x}_1 + (c_1 + c_2)\dot{x}_1 - c_2\dot{x}_2 + (k_1 + k_2)x_1 - k_2x_2 &= F_1 \\ m_2\ddot{x}_2 - c_2\dot{x}_1 + (c_2 + c_3)\dot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 &= F_2 \end{split}$$

- The differential equations of motion for mass m, and mass m, are coupled.
- The motion of each mass is influenced by the motion of the other.

Equations of motion

$$m_1\ddot{x}_1 + (c_1 + c_2)\dot{x}_1 - c_2\dot{x}_2 + (k_1 + k_2)x_1 - k_2x_2 = F_1$$

$$m_2\ddot{x}_2 - c_2\dot{x}_1 + (c_2 + c_3)\dot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 = F_2$$

The coupled differential eqns. of motion can be written in matrix form:

$$[m]\ddot{x}(t) + [c]\dot{x}(t) + [k]\ddot{x}(t) = \vec{F}(t)$$

where [m], [c] and [k] are the mass, damping and stiffness matrices respectively and are given by:

$$[m] = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \qquad [c] = \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 + c_3 \end{bmatrix} \qquad [k] = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix}$$

 $\vec{x}(t)$, $\vec{x}(t)$, $\vec{x}(t)$ and $\vec{F}(t)$ are the displacement, velocity, acceleration and force vectors

respectively and are given by:

$$\vec{x}(t) = \begin{cases} x_I(t) \\ x_2(t) \end{cases} \quad \vec{x}(t) = \begin{cases} \dot{x}_I(t) \\ \dot{x}_2(t) \end{cases} \quad \vec{x}(t) = \begin{cases} \ddot{x}_I(t) \\ \ddot{x}_2(t) \end{cases} \quad and \quad \vec{F}(t) = \begin{cases} F_I(t) \\ F_2(t) \end{cases}$$

Note: the mass, damping and stiffness matrices are all square and symmetric [m] = [m]^T and consist of the
mass, damping and stiffness constants.

Free Vibrations of Undamped System

The eqns. of motion for a free and undamped TDoF system become:

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = 0$$

$$m_2\ddot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 = 0$$

Let us assume that the resulting motion of each mass is harmonic: For simplicity, we will also assume that
the response frequencies and phase will be the same:

$$x_1(t) = X_1 \cos(\omega t + \phi)$$
 and $x_2(t) = X_2 \cos(\omega t + \phi)$

Substituting the assumed solutions into the eqns. of motion:

$$\begin{split} & \left[\left\{ -m_{1}\omega^{2} + (k_{1} + k_{2}) \right\} X_{1} - k_{2}X_{2} \right] \cos(\omega t + \phi) = 0 \\ & \left[-k_{2}X_{1} + \left\{ -m_{2}\omega^{2} + (k_{2} + k_{3}) \right\} X_{2} \right] \cos(\omega t + \phi) = 0 \end{split}$$

As these equations must be zero for all values of t, the cosine terms cannot be zero. Therefore:

$$\left\{ -m_1 \omega^2 + (k_1 + k_2) \right\} X_1 - k_2 X_2 = 0$$

$$-k_2 X_1 + \left[-m_2 \omega^2 + (k_2 + k_3) \right] X_2 = 0$$

Represent two simultaneous algebraic equations with a trivial solution when X, and X2 are both zero – no vibration.

Free Vibrations of Undamped System

 Written in matrix form it can be seen that the solution exists when the determinant of the mass / stiffness matrix is zero:

$$\begin{bmatrix} \left[-m_1 \omega^2 + (k_1 + k_2) \right] & -k_2 \\ -k_2 & \left[-m_2 \omega^2 + (k_2 + k_2) \right] \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = 0$$

or

$$m_1 m_2 \omega^4 - \{(k_1 + k_2) m_2 + (k_2 + k_3) m_1\} \omega^2 + (k_1 + k_2) (k_2 + k_2) - k_2^2 = 0$$

- The solution to the characteristic equation yields the natural frequencies of the system.
- The roots of the characteristic equation are:

$$\begin{split} \omega_{I}^{2}, \omega_{2}^{2} &= \frac{1}{2} \left\{ \frac{\left(k_{I} + k_{2}\right) m_{2} + \left(k_{2} + k_{3}\right) m_{I}}{m_{I} m_{2}} \right\} \\ &\pm \frac{1}{2} \left[\left\{ \frac{\left(k_{I} + k_{2}\right) m_{2} + \left(k_{2} + k_{3}\right) m_{I}}{m_{I} m_{2}} \right\}^{2} - 4 \left\{ \frac{\left(k_{I} + k_{2}\right) \left(k_{2} + k_{3}\right) - k_{2}^{2}}{m_{I} m_{2}} \right\} \right]^{1/2} \end{split}$$

This shows that the homogenous solution is harmonic with natural frequencies ω, and ω

RIMT

Free Vibrations of Undamped System

- Because the system is coupled, the constants X₁ and X₂ are a function of both natural frequencies ω₁ and
 ω₂
- Let the values of X, and X₂ corresponding to ω₁ be X₁(1) and X₂(1) and those corresponding to ω₂ be X₁(2) and X₂(2)
- Since the simultaneous algebraic equations are homogeneous only the amplitude ratios r₁ = (X₂⁽¹⁾/X₁⁽¹⁾) and r₂ = (X₂⁽²⁾/X₁⁽²⁾) can be determined.
- * Substituting ω_{1} and ω_{2} gives: $r_{1} = \frac{X_{2}^{2}}{X_{1}^{(1)}} = \frac{-m_{1}\omega_{1}^{2} + (k_{1} + k_{2})}{k_{2}} = \frac{k_{2}}{-m_{2}\omega_{1}^{2} + (k_{2} + k_{3})}$ $r_{2} = \frac{X_{2}^{(2)}}{X_{1}^{(2)}} = \frac{-m_{1}\omega_{2}^{2} + (k_{1} + k_{2})}{k_{2}} = \frac{k_{2}}{-m_{2}\omega_{2}^{2} + (k_{2} + k_{3})}$ $-k_{2}X_{1} + \left\{-m_{2}\omega^{2} + (k_{2} + k_{3})\right\}X_{2} = 0$
- The normal modes of vibration corresponding to the natural frequencies ω₁ and ω₂ can be expressed in vector form known as the modal vectors:

$$\vec{X}^{(1)} = \begin{bmatrix} X_1^{(1)} \\ X_2^{(1)} \end{bmatrix} = \begin{bmatrix} X_1^{(1)} \\ r_1 X_1^{(1)} \end{bmatrix} \quad and \quad \vec{X}^{(2)} = \begin{bmatrix} X_1^{(2)} \\ X_2^{(2)} \end{bmatrix} = \begin{bmatrix} X_1^{(2)} \\ r_2 X_1^{(2)} \end{bmatrix}$$

 The modal vectors describe the relative amplitude of vibration of each mass for each of the natural frequencies.

Free Vibrations of Undamped System

The motion (free vibration) of each mass is given by:

$$\vec{x}^{(1)}(t) = \begin{cases} x_1^{(1)}(t) \\ x_2^{(1)}(t) \end{cases} = \begin{cases} X_1^{(1)} \cos(\omega_1 t + \phi_1) \\ r_1 X_1^{(1)} \cos(\omega_1 t + \phi_1) \end{cases} \rightarrow First \ mod \ e$$

$$\vec{x}^{(2)}(t) = \begin{cases} x_1^{(2)}(t) \\ x_2^{(2)}(t) \end{cases} = \begin{cases} X_1^{(2)} \cos(\omega_2 t + \phi_2) \\ r_2 X_1^{(2)} \cos(\omega_2 t + \phi_2) \end{cases} \rightarrow First \ mod \ e$$

The constants X₁⁽¹⁾, X₁⁽²⁾, φ₁ and φ₂ are determined from the initial conditions.

RIMT UNIVERSITY

Free Vibrations of Undamped System

- Two initial conditions for each mass need to be specified (second order D.E.s)
- The system can be made to vibrate freely in either mode (i = 1, 2) by applying the appropriate initial conditions

$$x_1(t=0) = X_1^{(i)}$$
 $\dot{x}_1(t=0) = 0$
 $x_2(t=0) = r_1 X_1^{(i)}$ $\dot{x}_2(t=0) = 0$

- Any other combination of initial conditions will result in the excitation of both modes
- Two initial conditions for each mass need to be specified (second order D.E.s)
- The resulting motion is obtained by superposition of the normal modes:

$$\vec{x}(t) = \vec{x}^{(1)}(t) + \vec{x}^{(2)}(t)$$

or

$$\vec{x}_{1}(t) = \vec{x}_{1}^{(1)}(t) + \vec{x}_{1}^{(2)}(t) = X_{1}^{(1)}\cos(\omega_{1}t + \phi_{1}) + X_{1}^{(2)}\cos(\omega_{2}t + \phi_{2})$$

$$\vec{x}_{2}(t) = \vec{x}_{2}^{(1)}(t) + \vec{x}_{2}^{(2)}(t) = r_{1}X_{1}^{(1)}\cos(\omega_{1}t + \phi_{1}) + r_{2}X_{1}^{(2)}\cos(\omega_{2}t + \phi_{2})$$

If the initial conditions are:

$$x_1(t=0) = x_1(0)$$
 $\dot{x}_1(t=0) = \dot{x}_1(0)$
 $x_2(t=0) = x_2(0)$ $\dot{x}_2(t=0) = \dot{x}_2(0)$

The constants X₁⁽¹⁾, X₁⁽²⁾, φ₁ and φ₂ can be by substituting the initial conditions in the combined motion eqns.

Free Vibrations of Undamped System

$$x_{1}(t) = X_{1}^{(1)} \cos(\omega_{1}t + \phi_{1}) + X_{1}^{(2)} \cos(\omega_{2}t + \phi_{2})$$

$$\vec{x}_{2}(t) = r_{1}X_{1}^{(1)} \cos(\omega_{1}t + \phi_{1}) + r_{2}X_{1}^{(2)} \cos(\omega_{2}t + \phi_{2})$$

substituting the initial conditions:

$$\begin{split} x_{I}(0) &= X_{I}^{(1)} \cos(\phi_{I}) + X_{I}^{(2)} \cos(\phi_{2}) \\ \dot{x}_{I}(0) &= -\omega_{I} X_{I}^{(1)} \sin(\phi_{I}) - \omega_{2} X_{I}^{(2)} \sin(\phi_{2}) \\ x_{2}(0) &= r_{I} X_{I}^{(1)} \cos(\phi_{I}) + r_{2} X_{I}^{(2)} \cos(\phi_{2}) \\ \dot{x}_{2}(0) &= -\omega_{I} r_{I} X_{I}^{(1)} \sin(\phi_{I}) - \omega_{2} r_{2} X_{I}^{(2)} \sin(\phi_{2}) \end{split}$$

The following unknowns can be identified:

$$\begin{split} x_{I}(0) &= X_{I}^{(1)} \cos(\varphi_{I}) + X_{I}^{(2)} \cos(\varphi_{2}) \\ \dot{x}_{I}(0) &= -\omega_{I} X_{I}^{(1)} \sin(\varphi_{I}) - \omega_{2} X_{I}^{(2)} \sin(\varphi_{2}) \\ x_{2}(0) &= r_{I} X_{I}^{(1)} \cos(\varphi_{I}) + r_{2} X_{I}^{(2)} \cos(\varphi_{2}) \\ \dot{x}_{2}(0) &= -\omega_{I} r_{I} X_{I}^{(1)} \sin(\varphi_{I}) - \omega_{2} r_{2} X_{I}^{(2)} \sin(\varphi_{2}) \end{split}$$

RIMT

Free Vibrations of Undamped System

Solving for the identified constants yields:

$$X_{I}^{(1)}\cos(\phi_{I}) = \left\{ \frac{r_{2}x_{I}(\theta) - x_{2}(\theta)}{r_{2} - r_{I}} \right\} \qquad X_{I}^{(2)}\cos(\phi_{2}) = \left\{ \frac{-r_{I}x_{I}(\theta) + x_{2}(\theta)}{r_{2} - r_{I}} \right\}$$

$$X_{I}^{(1)}\sin(\phi_{I}) = \left\{ \frac{-r_{2}\dot{x}_{I}(\theta) + \dot{x}_{2}(\theta)}{\omega_{I}(r_{2} - r_{I})} \right\} \qquad X_{I}^{(2)}\sin(\phi_{2}) = \left\{ \frac{r_{I}\dot{x}_{I}(\theta) - \dot{x}_{2}(\theta)}{\omega_{2}(r_{2} - r_{I})} \right\}$$

Therefore:

$$X_{I}^{(1)} = \sqrt{\left\{X_{I}^{(1)}\cos(\phi_{I})\right\}^{2} + \left\{X_{I}^{(1)}\sin(\phi_{I})\right\}^{2}}$$

$$X_{I}^{(2)} = \sqrt{\left\{X_{I}^{(2)}\cos(\phi_{2})\right\}^{2} + \left\{X_{I}^{(2)}\sin(\phi_{2})\right\}^{2}}$$

$$\phi_{I} = a \tan \left\{\frac{X_{I}^{(1)}\sin(\phi_{I})}{X_{I}^{(1)}\cos(\phi_{I})}\right\}$$

$$\phi_{2} = a \tan \left\{\frac{X_{I}^{(2)}\sin(\phi_{2})}{X_{I}^{(2)}\cos(\phi_{2})}\right\}$$

Free Vibrations of Undamped System

In terms of the amplitude ratios r_i and natural frequencies ω_i:

$$\begin{split} X_{I}^{(1)} &= \frac{1}{(r_{2} - r_{I})} \sqrt{\left[r_{2} x_{I}(\theta) - x_{2}(\theta)\right]^{2} + \frac{\left[-r_{2} \dot{x}_{I}(\theta) + \dot{x}_{2}(\theta)\right]^{2}}{\omega_{I}^{2}}} \\ X_{I}^{(2)} &= \frac{1}{(r_{2} - r_{I})} \sqrt{\left[-r_{I} x_{I}(\theta) - x_{2}(\theta)\right]^{2} + \frac{\left[r_{I} \dot{x}_{I}(\theta) + \dot{x}_{2}(\theta)\right]^{2}}{\omega_{2}^{2}}} \\ \phi_{I} &= a \tan \left\{ \frac{-r_{2} \dot{x}_{I}(\theta) + \dot{x}_{2}(\theta)}{\omega_{I} \left[r_{2} x_{I}(\theta) - x_{2}(\theta)\right]} \right\} \\ \phi_{2} &= a \tan \left\{ \frac{r_{I} \dot{x}_{I}(\theta) + \dot{x}_{2}(\theta)}{\omega_{2} \left[-r_{I} x_{I}(\theta) - x_{2}(\theta)\right]} \right\} \end{split}$$

Free Vibrations of Undamped System

Co-ordinate coupling

- Whenever possible, the coordinates are chosen so that they are independent based from the equilibrium position.
- In some cases, another pair of coordinates may be used generalised coordinates

- The lathe can be simplified to be represented by a 2DoF with the bed considered as a rigid body with two lumped masses representing the headstock and tailstock assemblies. The supports are represented by two springs.
- The following set of coordinates can be used to describe the system:

Co-ordinate coupling

- (1): the deflection at each extremity of the lathe x₁(t) and x₂(t)
- (2): the deflection at the centre of gravity x(t) and the rotation θ(t)
- (3): the deflection at extremity A x_t(t) and the rotation θ(t)

Co-ordinate coupling

- Equations of motion using x(t) and $\theta(t)$
- Using the FBD, in the vertical direction and about the C.G. respectively:

•
$$m\ddot{x} = -k_1(x - l_1\theta) - k_2(x + l_2\theta)$$
 and $J_0\ddot{\theta} = k_1(x - l_1\theta)l_1 - k_2(x + l_2\theta)l_2$

in matrix form:

$$\begin{bmatrix} m & \theta \\ \theta & J_o \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -(k_1 l_1 - k_2 l_2) \\ -(k_1 l_1 - k_2 l_2) & (k_1 l_1^2 + k_2 l_2^2) \end{bmatrix} \begin{bmatrix} x \\ \theta \end{bmatrix} = \begin{bmatrix} \theta \\ 0 \end{bmatrix}$$

- As each eqn. contains both x and θ the system is coupled - Elastic or static coupling
- Whenever a displacement or torque is applied thru the C.G. the resulting motion will contain both translation and rotation.
- The system is uncoupled (eqns. independent) only when $k_i l_i = k_i l_i$
- Only then can pure translation or rotation be generated by a displacement or torque thru the C.G.

Co-ordinate coupling

(1): the deflection y(t) at point P located at distance e to the left of the C.G. and the rotation θ(t)

Co-ordinate coupling

Using the FBD, the translational and rotational equations of motion are:

$$m\ddot{y} = -k_{1}(y - \dot{l_{1}}\theta) - k_{2}(y - \dot{l_{2}}\theta) - me\ddot{\theta} \quad and \quad J_{p}\ddot{\theta} = k_{1}(y - \dot{l_{1}}\theta)\dot{l_{1}} - k_{2}(y - \dot{l_{2}}\theta)\dot{l_{2}} - me\ddot{y}$$

in matrix form:

$$\begin{bmatrix} m & me \\ me & J_p \end{bmatrix} \begin{bmatrix} \ddot{y} \\ \ddot{\theta} \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & \left(k_2 \dot{l_2} - k_1 \dot{l_1} \right) \\ \left(k_2 \dot{l_2} - k_1 \dot{l_1} \right) & \left(k_1 \dot{l_1}^2 + k_2 \dot{l_2}^2 \right) \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} \theta \\ \theta \end{bmatrix}$$

- As each eqn. contains both y, y", θ and θ' the system is coupled with both elastic (static) and mass (dynamic) coupling
- When k₁l'₁ = k₂l'₂, the system is dynamically coupled only → the inertial force my" produced by vertical motion will induce a rotational motion (my"e) and vice verca.

Co-ordinate coupling

General case for viscously damped 2DoF:

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- System has elastic (static) coupling if the stiffness matrix is not diagonal
- System has damping or velocity (dynamic) coupling if the damping matrix is not diagonal
- System has mass or inertial (dynamic) coupling if the mass matrix is not diagonal
- The system behaviour does not depend on the choice of coordinates!
- There exists a set of coordinates which will produce (statically and dynamically) uncoupled equations
 of motions

 principal or natural coordinates. These uncoupled equations can be solved
 independently.

Harmonic Forced Vibrations- Undamped

The harmonic excitation forces are:

$$F_I(t) = F_I \sin(\omega_f t)$$
 and $F_2(t) = F_2 \sin(\omega_f t)$
where ω is the forcing frequency.

Applying Newton's 2nd law gives the eqns. of motion:

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = F_1\sin(\omega_f t)$$

 $m_2\ddot{x}_2 + k_2x_2 - k_2x_1 = F_2\sin(\omega_f t)$

Assuming that the solutions will take the form of the excitation – harmonic:

$$x_1 = X_1 \sin(\omega_f t)$$
 and $x_2 = X_2 \sin(\omega_f t)$

Substituting for x, and x₂ in the eqns. of motion:

$$\begin{split} &(-m_1\omega_f^2+k_1+k_2)X_1\sin(\omega_f t)-k_2X_2\sin(\omega_f t)=F_1\sin(\omega_f t)\\ &(-m_2\omega_f^2+k_2)X_2\sin(\omega_f t)-k_2X_1\sin(\omega_f t)=F_2\sin(\omega_f t) \end{split}$$

Harmonic Forced Vibrations- Undamped

$$\begin{bmatrix} \begin{pmatrix} k_I + k_2 - m_I \omega_f^2 \end{pmatrix} & -k_2 \\ -k_2 & \begin{pmatrix} k_2 - m_2 \omega_f^2 \end{pmatrix} \end{bmatrix} \begin{bmatrix} X_I \\ X_2 \end{bmatrix} = \begin{bmatrix} F_I \\ F_2 \end{bmatrix}$$

or

$$\begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{bmatrix} \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ F_2 \end{Bmatrix} \rightarrow d_{11}X_1 + d_{12}X_2 = F_1 \text{ and } d_{21}X_1 + d_{22}X_2 = F_2$$

The response amplitudes X₁ and X₂ can be determined using Cramer's rule:

$$X_1 = \begin{vmatrix} F_1 & d_{12} \\ F_2 & d_{22} \\ d_{11} & d_{12} \\ d_{21} & d_{22} \end{vmatrix} = \frac{d_{22}F_1 - d_{12}F_2}{d_{11}d_{22} - d_{21}d_{12}} \quad \text{and} \quad X_2 = \begin{vmatrix} d_{11} & F_1 \\ d_{21} & F_2 \\ d_{11} & d_{12} \\ d_{21} & d_{22} \end{vmatrix} = \frac{d_{11}F_2 - d_{21}F_1}{d_{11}d_{22} - d_{21}d_{12}}$$

- Note: the determinant (characteristic equation) can be equated to zero $(d_{11}d_{22} d_{21}d_{12} = 0)$ to define the . system natural frequencies.
- Under forced excitation, when $d_{11}d_{22} d_{21}d_{12} = 0$ the response amplitudes X_1 and $X_2 \rightarrow \infty$.
- ٠ This defines resonance conditions (excitation frequency corresponds to either natural frequencies)
- Note: Due to coupling both masses will exhibit resonance when the excitation force is applied to only one ٠ mass:

UNIT: III Harmonic Forced Vibrations- Undamped

- A mass-spring assembly added to a single degree of freedom with a natural frequency ω, tuned to the forcing frequency ω, will act as a vibration absorber and reduce the vibration of the main mass to zero.
- Undamped vibration absorbers are designed so that the natural frequencies of the resulting system are displaced away from the excitation frequency.
- The equations of motion of the main mass m, and the auxiliary mass m, are:

$$m_1\ddot{x}_1 + k_1x_1 + k_2(x_1 - x_2) = F_0 \sin(\omega t)$$

 $m_2\ddot{x}_2 + k_2(x_2 - x_1) = 0$

Rearranging

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = F_0 \sin(\omega t)$$

 $m_2\ddot{x}_2 + k_2x_2 - k_2x_1 = 0$

Assuming harmonic solutions

$$x_j(t)=X_j\sin(\omega t)$$
 $j=1,2$

And substituting into the eqns, of motion:

$$\left[-\omega^{2} m_{1} X_{1} + (k_{1} + k_{2}) X_{1} - k_{2} X_{2}\right] \sin(\omega t) = F_{0} \sin(\omega t)$$
$$-\omega^{2} m_{2} X_{2} + k_{2} X_{2} - k_{2} X_{1} = 0$$

Harmonic Forced Vibrations- Undamped

In matrix form:

$$\begin{bmatrix} -\omega^2 m_1 + (k_1 + k_2) & -k_2 \\ -k_2 & -\omega^2 m_2 + k_2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} F_0 \\ 0 \end{bmatrix}$$

Using Cramer's rule to determine the response amplitudes X1 and X2:

$$X_{I} = \frac{\begin{vmatrix} F_{I} & d_{I2} \\ F_{2} & d_{22} \end{vmatrix}}{\begin{vmatrix} d_{I1} & d_{I2} \\ d_{2I} & d_{22} \end{vmatrix}} = \frac{d_{22}F_{I} - d_{12}F_{2}}{d_{II}d_{22} - d_{2I}d_{I2}} \quad \text{and} \quad X_{2} = \frac{\begin{vmatrix} d_{I1} & F_{I} \\ d_{2I} & F_{2} \end{vmatrix}}{\begin{vmatrix} d_{I1} & d_{I2} \\ d_{2I} & d_{22} \end{vmatrix}} = \frac{d_{II}F_{2} - d_{2I}F_{I}}{d_{II}d_{22} - d_{2I}d_{I2}}$$

Or

$$X_{1} = \frac{\left(k_{2} - \omega^{2} m_{2}\right) F_{0}}{\left(k_{1} + k_{2} - \omega^{2} m_{1}\right) \left(k_{2} - \omega^{2} m_{2}\right) - k_{2}^{2}} \quad \text{and} \quad X_{2} = \frac{k_{2} F_{0}}{\left(k_{1} + k_{2} - \omega^{2} m_{1}\right) \left(k_{2} - \omega^{2} m_{2}\right) - k_{2}^{2}}$$

 In order to minimise the amplitude of mass 1, the numerator of X, should be equated to zero which produces:

$$\omega^2 = \frac{k_2}{m_2}$$

Harmonic Forced Vibrations- Undamped

If the original machine was operating near resonance:

$$\omega^2$$
; $\omega_l^2 = \frac{k_l}{m_l}$

If the absorber is designed so that its natural frequency corresponds to the forcing frequency:

$$\omega^2 = \frac{k_2}{m_2} = \frac{k_1}{m_1}$$

The amplitude of the machine (m₁) at its original resonant frequency will be zero.

Since

$$\delta_{st} = \frac{F_0}{k_I}$$
, $\omega_I = \sqrt{\frac{k_I}{m_I}}$ and $\omega_2 = \sqrt{\frac{k_2}{m_2}}$

The dynamic response (magnification factor) of the main mass and the auxiliary mass (absorber) are :

$$\frac{X_{I}}{\delta_{st}} = \frac{1 - \left(\frac{\omega}{\omega_{2}}\right)^{2}}{\left[1 + \frac{k_{2}}{k_{I}} - \left(\frac{\omega}{\omega_{I}}\right)^{2}\right] \left[1 - \left(\frac{\omega}{\omega_{2}}\right)^{2}\right] - \frac{k_{2}}{k_{I}}} \quad \text{and} \quad \frac{X_{2}}{\delta_{st}} = \frac{1}{\left[1 + \frac{k_{2}}{k_{I}} - \left(\frac{\omega}{\omega_{I}}\right)^{2}\right] \left[1 - \left(\frac{\omega}{\omega_{2}}\right)^{2}\right] - \frac{k_{2}}{k_{I}}}$$

Harmonic Forced Vibrations- Undamped Absorber

- The size of the auxiliary mass m₂ is governed by the allowable deflection X₂.
- These systems can be quite effective over a reasonable frequency band ± 5 %.
- The new system has an added degree of freedom hence two resonance peaks.
- The system will pass thru the first resonance during startup, it is essential that the run-up time is minimised.
- Otherwise, introduce damping to prevent large vibrations of m, if the excitation frequency is likely to vary.
- At ω= ω, X₁ = 0 and X₂ = -k₁ δ_s/k₂ =
 -F₀/k₂ which shows that the force exerted by the absorber mass is out of phase with (counteracts) the exciting force which causes X₁ to reduce to zero.

Harmonic Forced Vibrations- Undamped Absorber

Harmonically forced vibrations – damped absorber

 Introducing a viscous damper produces the following eqns. of motion:

$$m_1\ddot{x}_1 + k_1x_1 + k_2(x_1 - x_2) + c_2(\dot{x}_1 - \dot{x}_2) = F_0 \sin(\omega t)$$

 $m_2\ddot{x}_2 + k_2(x_2 - x_1) + c_2(\dot{x}_2 - \dot{x}_1) = 0$

Assuming harmonic solutions in the form:

$$x_j(t)=X_je^{i\omega t}$$
 $j=1,2$

Yields the steady-state amplitudes:

Harmonic Forced Vibrations- Damped Absorber

Using the following definitions:

Mass ratio: $\mu = m_2/m_1$

Static deflection: $\delta_{st} = F_0/k_1$

Square absorber natural frequency: $\omega_a^2 = k_2/m_2$

Square main mass natural frequency: $\omega_n^2 = k_1/m_1$

Natural frequency ratio: $f = \omega_a / \omega_n$

Forced frequency ratio: $g = \omega / \omega_n$

Critical damping constant: $c_c = 2m_2\omega/\omega_n$

Damping ratio: $\zeta = c_2/c_c$

The magnitude ratios can be written as:

$$\frac{X_{I}}{\delta_{st}} = \sqrt{\frac{\left(2\zeta g\right)^{2} + \left(g^{2} - f^{2}\right)^{2}}{\left(2\zeta g\right)^{2} \left(g^{2} - I + \mu g^{2}\right)^{2} + \left\{\mu f^{2} g^{2} - \left(g^{2} - I\right) \left(g^{2} - f^{2}\right)\right\}^{2}}}$$

$$\frac{X_2}{\delta_{st}} = \sqrt{\frac{(2\zeta g)^2 + f^4}{(2\zeta g)^2 (g^2 - I + \mu g^2)^2 + [\mu f^2 g^2 - (g^2 - I)(g^2 - f^2)]^2}}$$

Harmonic Forced Vibrations- Damped Absorber

RIMT

Harmonic Forced Vibrations- Damped Absorber

- When damping is infinite, the two masses are rigidly coupled and the system behaves as an undamped single DoF system with mass m, + m, and stiffness k,
- X, approaches ∞ when ζ = 0 and ζ = ∞
- The amplitude of the absorber mass is always greater that that of the main mass. Allow for large vibration amplitudes and consider fatigue issues for design of absorber springs.
- X, will have a minimum
- All damping values produce curves which intersect at A and B
- The frequencies of A and B can be located by substituting the extreme conditions ζ = 0 and ζ = ∞ into the
 magnitude ratio equation.
- It has been shown that vibration absorbers operate optimally when the ordinates of A and B are equal for which:

$$f = \omega_a / \omega_n = \frac{1}{(1+\mu)} = \frac{1}{(1+m_2/m_1)}$$

Such systems are known as tuned vibration absorbers.