ZARIMT

4® | NIVERSITY

MECHANICAL VIBRATIONS

Course Name: B.Tech-ME

Semester; 7th

Prepared by: Dr. Talwinder Singh Bedi

education for life www.rimt.ac.in Department of Mechanical Engineering 1




UNIT: Ill Two Degree of Freedom Svstems £2RIMT

UNIVERSITY

/////////////////////////////77/
s (b)

(L g L L L L LA Ll

33 ’
y
/]
/ 5 +—+ x(r) '
AAA % 4 v(r)
A / A ()
y Instrument ? 1 AAAA Wi
AAAAA (mass m) MM, ]
7 L/ ,:
WM AL 4
Il *
. e Rr—y 3
Packaging <~ - B S S e
(cushioning)
matenial (a) (b)

education for life www.rimt.ac.in Department of Mechanical Engineering




UNIT: Il Two Degree of Freedom Systems £2RIMT

UNIVERSITY

. No. of DoF of system = No. of mass elements x number of motion types for each mass
. For each degree of freedom there exists an equation of motion — usually coupled differential equations.
. Coupled means that the motion in one coordinate system depends on the other

. If harmonic solution is assumed, the equations produce two natural frequencies and the amplitudes of the
two degrees of freedom are related by the natural, principal or normal mode of vibration,

* Under an arbitrary initial disturbance, the system will vibrate freely such that the two normal modes are
superimposed,

. Under sustained harmonic excitation, the system will vibrate at the excitation frequency. Resonance occurs
if the excitation frequency corresponds to one of the natural frequencies of the system
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UNIT: Ill Two Degree of Freedom Systems £2RIMT
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. Equations of motion
. Consider a viscously damped system:
. Motion of system described by position x,(t) and x,(t) of masses m, and m,

. The free-body diagram is used to develop the equations of motion using Newton's second law
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UNIT: Ill Two Degree of Freedom Systems £2RIMT
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. Equations of motion

vy
KX, ko(xs — x) K1X;
, m . . ms- .
€y X — X)) C1X>

I",_’\", + C!.i‘, + k,,\" —(':(.i’.p oo l, )~ A’_ﬂl X2 =Xy )= I‘.l

Ill.w.'\"_\. +('3(.i’.1 —.i', )+ A':/.'('] =X )+(‘3.i'_1 +/(.¢.\'3 - I‘]
ar
IH,.'\.', +((.'l +(': ‘).i‘[ -L':."\': +’l\'l +k_1 ).\'I —'k_t\'_) - I:I

Ill.'_).'\"_w - (l'_w.i'l +/(': + (‘_; )\.\ —l\'.a.\'l +( A’: + A'_g ).\': = F_ﬁ

. The differential equations of motion for mass m, and mass m, are coupled.

. The motion of each mass is influenced by the motion of the other,
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UNIT: Ill Two Degree of Freedom Systems &2RIMT
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. Equations of motion
I”,:\"l +(('1 +('_7 )\, -(':.i'_a +(", +k: ).\', “k:.\'] = Fl

m_a_'\"_a - (‘_ni'/ +((‘: T3 ).i'_a -k_».\', +(k3 +k_¢ ).\'3 = F.a
. The coupled differential eqns. of motion can be wrilten in matrix form:

(m| ¥t )+|c| X))+ k| Z(1)=F(1)

where ' m, | c| and k| are the mass, damping and stifiness matrices respeclively and are given by:

i ."'I 0 ' '('I+('3 =t k,*‘ka B ’
m] = g[8 ] ggufhte H
=C3 Cy+&y ~ky  ky+k;

() n
(1), x(1), x(1) and F(t) are the displacement, velocity, acceleration and force veclors

-t

respectively and are givenby :
x(t)| - ()] . (1) 3 Fi(t)
X(t)= ‘ xX(t)= _’ X(t)= __' and Frr)=4"!
.l'_v(l) .\‘_.1(’) Xa(t) F_v(l)

. Note: the mass, damping and stiffness matrices are all square and symmetric [m] = [m]' and consist of the
mass, damping and stifiness constants.
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UNIT: 11 Z2RIMT
Free Vibrations of Undamped System

. The eqns. of motion for a free and undamped TDoF system become:
m,.'\", +(A’, + /l'_’ ).\', -k:.\'_s =
lll::f: "k.v.l'l +(k_7 +k3 )J': = ()

. Let us assume that the resulting motion of each mass is harmonic: For simplicity, we will also assume that
the response frequencies and phase will be the same:

Xi(t)=X,costan+¢) and  x5(1)=Xscos{wn+¢)

. Substituting the assumed solutions into the eqns. of motion:
[{-—m,w +{A,+A,l} -k X ]cos{axﬂ.‘)):(}

; O | i
[-A-J.x 4 -maw® (ks +k3)} X, ]cns( o+9)=0
As these equations muslt be zero for all values of t, the cosine terms cannol be zero, Therefore;

’ -/Y! —kga\’.‘ = ’)

~ky Xy +[=maw + (ks +k3)| X, =0

{—riz,w‘,+{l\',+k3'l]~

. Represent two simultaneous algebraic equations with a trivial solution when X, and X, are both zero — no vibration,
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Free Vibrations of Undamped System

. Written in matrix form it can be seen thal the solution exists when the determinant of the mass / stiffness
maltrix is zero:

2 itk ok ;
[-m,w +\A,+A_»}j; -k > ['\'1]_0
—k> {—-m:w‘, +kr+k; )] X

\ J \ 4 { ! 4
II!IIHJ(UJ"'Hk,+A’:|I": +|‘k_v +k3v| I",}' w" +%k,+k3/|(k3 +I|'],| -1\5 =)

or

. The solution to the characteristic equation yields the natural frequencies of the system,
. The roots of the characteristic equation are:
- [{( kp+hksylmy+|ky+k;lm }

wj , @5 =
al min
2

)

b 5 ,9
sl {u,w_.;n,.,+‘;/.-_,+a-_,>m,}‘ 4 (ky+ky)(ky+k;)=k3 || °

7y mpms

’ This shows that the homogenous solution is harmonic with natural frequencies @, and @,
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UNIT: I i‘,‘,’f ljRN,lleles;[
Free Vibrations of Undamped System

Because the system is coupled, the constants X, and X, are a function of both natural frequencies @, and
W,

e Let the values of X, and X, corresponding to @, be X, and X, and those corresponding to @), be X, and
x:{l‘_l

. Since the simultaneous algebraic equations are homogeneous only the amplitude ratios r, = (X,/"/X,") and
= (X,7/X ") can be determined.

. Subslltulmg ({), gnd @), gives:

-",(ﬂ, +|‘1+Aa) k-
7 o) 2 , M1 T
Am L IR ST, =m0 +(ky+ka)| Xy =k Xy =0
XS mw +(kyrky) ks ko X+ =m0 +(ky + k)| X =0
" XA ks —ms@5° +(ky+k;)

. The normal modes of vibration corresponding to the natural frequencies @, and @, can be expressed in
vector form known as the modal vectors:

9

vil) ,\';“ "\’;“ vi2) "-’ "’I-)
LSl I o . and X'=y b s

.\'f, 1 X; ; .-\'.,“’ X, g

. The modal vectors describe the refative amplitude of vibration of each mass for each of the natural
frequencies.

UTpHdAl LIITIHIL VI vicuiallival cugiliicci g
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UNIT: 1] L2RIMT
Free Vibrations of Undamped System

. The motion (free vibration) of each mass is given by:

/I ,

(1 ‘(1) X costwgt+¢;) )

(1)=+ ” = » - First mod ¢
)l 1) nX; ' cos( +0;)

(2 o U5 BPOS

‘(7’ .‘, (') .\’ (’U.\’(u:’+¢3) ..

=g = : - First mod e
‘l’. J(l) r_».-\';' 4 cosf ll):f + ¢: )

. The conslants X,/ , X,@ @, and ¢, are determined from the initial conditions.
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UNIT: i
Free Vibrations of Undamped System

Two initial conditions for each mass need o be specified (second order D.E.s)

The system can be made to vibrate freely in either mode (i = 1, 2) by applying the appropriate initial
conditions

x(t=0)=X{" 2 (1=0)=0
xt=0)=nX"  ixt=0)=0

Any other combination of initial conditions will result in the excitation of both modes
Two initial conditions for each mass need 1o be specified (second order D.E.s)
The resulting motion is obtained by superposition of the normal modes:

3
) ="+ )
or
-"'I(I)=-\"1'“H)+.\’ 1) = X4V costant + 9, )+ X! cos( st + 6, )

b
%5(1)=1%; Detys s 2t = r,,\";“('(m((o,!+¢, )+ X cos(wst + ¢5)

If the initial conditions are:
X(t=0)=x,(0) X(t=0)=x,;(0)
.\':(f=0)=.\':(0) \:(t="}=\:((’)

The constants X,/", X /@ @, and @. can be by substituting the initial conditions in the combined motion eqns.
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UNIT: Il E3RIMT
Free Vibrations of Undamped System

xX(t)= .\’; " cos( Wyl + @ )+ \; L cos( wst + 5 )
?

Xoft)= r,.-\"; {) cos{ ayt + ¢ )+ r_s.»\"; < cosf{ st +@> )

substituting the initial conditions:
: , o2

xi(0)=X ; £ cos( @ )+ X ; ' cos( @)

3 s (1) .; (2 _;

\1(0) = -(l),.-\ ! s ¢/ ) - (U_?A / .\IH(¢_1 )

3
X(0)=nrX ;“msm, )+r_~.,\';‘ "cos( ¢, )

X,(0)= -—w,r,_k'; " sin @)~ (031'3.\’; “/ sin( )

The following unknowns can be identified:

xi(0)= .\';“('ns(tp, )+ X '(

| cos(p;)
\,(())_—(u,\('w:(rp,) (va\, 'sin(p; )
h(l))-ll\, un(tp,)+h\(‘)c0s(w,)

i:(”) = -(l)lr, .\.’ .\'i"(fﬂ’ ) (01’# \'! \l"(‘ﬂ‘v
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UNIT: i
Free Vibrations of Undamped System

. Solving for the identified constants yields:
»X (0 )= x»(1) (2 = x(0)4x5(0
X}"cox(a,)z X () —=x»(0) ‘\,;,,w.‘_w‘)z rx(0)+x,(0)
2=7 ' W n=n
~rsX (0 )+ %500 (2 . . X0 )=x5(0
“sin(c),)= & ’(, : t“‘( : .-\;".s‘m(a'h/-—-q r,\,(') (L
aylra=r) ) |\ r=r)
Therefore:
.-\’;“ - \/[ ,\';“ cos( @ )}. +{ .\";“ sin{ @ )} . R e 5
2)_ |l [ (2 }* ;
. (el o2 N — '
‘x’ — J\ J‘l (()5(@1 )J +lz\’ A\l"’ 0: )l' € X’; I)
N
1) .; =
@ = atan 2 ” = sin(#) —
X, " cos(¢;) ;N
" K¢

X4 sinf ¢,
¢, =alan : ) 74 }
X" cos(@,) /\,; & cos( ¢1 )

¥
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UNIT: 1] L2RIMT
Free Vibrations of Undamped System

. In terms of the amplitude ratios r, and natural frequencies @),

4
) / > | =mk(0)+55(0))"
x{! = L axit0)=5;000 "+ — 0L T2l /)
=1 on
. y L ri(0)+5(0))°
.-\"’,"z, E | =rpx)(0)=x5(0))" +l i 5 2%
(ry—=ry) w5

—raiy(0)+33(0)

@ =atan
k | rsx;(0)=x5(0)]

O =atan
4 @y | =rpx (0)=x5(0)]

ri (0)+%5(0) }
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UNIT: Il E3RIMT

Free Vibrations of Undamped System

Example:

(a) First mode
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UNIT: Il &2RIMT
Co-ordinate coupling

. Whenever possible, the coordinales are chosen so that they are independent based from the equilibrium
position,
. In some cases, another pair of coordinates may be used —~ generalised coordinates

Headstogk Live center PDead center Fmdstock
g

| EEmm—
- [}, G Fﬂ

¢ The lathe can be simplified to be represented by a 2DoF with the bed considered as a rigid body with two
lumped masses representing the headstock and tailstock assemblies. The supports are represented by two
sSprings.

e The following set of coordinales can be used to describe the system:
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UNIT: 1l EZARIMT
Co-ordinate coupling

(1): the deflection at each extremity of the lathe x,(t) and x.()

(2): the deflection at the centre of gravity x(t) and the rotation (1)
. (3): the deflection at extremity A x,(I) and the rotation &)

kixs = kolx + [18)
Department of Mechanical Engineering
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UNIT: 1l EZARIMT
Co-ordinate coupling

Equations of motion using x(t) and &t)

Using the FBD, in the vertical direction and about the C.G, respectively:
e I".‘l.'=-k,(.\'—,’0)-k3(.\'+139) and J"é=k,(."-l,9”,“k:(.\'*'l_va”_v

inmatnx form:
m 07[x kp+k; =kl =k) 111 [0
. =
0 S, N8 | =(kity=kaly) Kyl +k3t3) 0

. As each eqn. contains both x and @ the system is
coupled — Elastic or static coupling

. Whenever a displacement or torque is applied thru
the C.G. the resulling motion will contain both v (r)
translation and rotation.

. The system is uncoupled (eqns. independent) only *+—
when &/, = kJ, '

. Only then can pure translation or rotation be
generated by a displacement or torque thru the C.G.

Lol "«-l-:k-ll't"“]
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UNIT: 1l EZARIMT
Co-ordinate coupling

. (1): the deflection y(t) at point P located at distance e o the left of the C.G. and the rotation &)

vs 4 150

Ky = ['H) k-(v.+ [58)
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UNIT: 1l | . EZARIMT
Co-ordinate coupling

. Using the FBD, the translational and rotational equations of motion are:
my =~k (y=10)=ky( y=1,0 )=mebl  and T8 =ki(y=1,0)1;=ky( y=150)l5 - mey

in matrix form:
[m meH_“"} kj+k; lklll‘kllll {‘} {()}
. b+ =
me Jp |0 |\ kaly =kl | |‘k1112+,‘2.’) v

. As each eqn. contains both y, y", #and ¢'' the
system is coupled with both elastic (static) and
mass (dynamic) coupling

. When &,/", = kd’, , the system is dynamically
coupled only — the inertial force my"” produced

by vertical motion will induce a rotational motion
(my“e) and vice verca.

A<'\ -nl “' l‘\'\ *l’l'.'
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UNIT: 1l EZARIMT
Co-ordinate coupling

. General case for viscously damped 2DoF;
My, Mp> \’l Cr; €p2 \1 k’l I\'I? X ()
- + - + - —
m_,, o \3 €2 €2 .i‘: kg} k.)3 .1'2 ()
o System has elastic (static) coupling if the sliffiness matrix is not diagonal

o System has damping or velocity (dynamic) coupling if the damping matrix is not diagonal
. System has mass or inertial (dynamic) coupling if the mass matrix is not diagonal

. The system behaviour does nol depend on the choice of coordinates!

. There exists a set of coordinates which will produce (statically and dynamically) uncoupled equations
of motions — principal or natural coordinates, These uncoupled equations can be solved
independently.
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UNIT: Il EARIMT

"‘ 8. UNIVERSITY

Harmonic Forced Vibrations- Undampec
%

. Harmonically forced vibrations — undamped

. The harmonic excitation forces are: k,
Fi(t)=F;sin{@w;t) and  Fy(t)=F,sinfwgt) X, k,
wherew ¢s the forcing frequency. m
1 I
. lying Newton's 2™ law gives the eqns. of motion:
Applying g q F 4+K,(%,X,) E l
’"I"‘:f +f'I\'I +A’s ).\’, —k».\'v = Ff sinf (Ul'l)
llh\"- +‘ﬂ\1—“" r1 \l"((l),l) k?(xi’-x’)
. Assuming that the solutions will take the form of the excitation -~ harmonic: m, m, T
x;=Xysinfwet) and  x,=X,sin(wgt)
f f/ F2 F2

. Substituting for x, and x, in the egqns. of motion:
> a ’
(=mpwy +kyp+k; )X psinf@pt )=k Xy sinf @t )= Fysinf gt )

) e i
(=my@y + k3 )Xy sinfwpt )=k, Xy sinf@gt) = F;sinf gt )
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UNIT: 1l ZARIMT
Harmonic Forced Vibrations- Undamped

Dividing throughout by sin{wgt) and putting in matrix form :

|k,+k:—m,w;} -k {4\'1}={Ff}
-k, | ky— m_»a)f»] X2 F>

-

or
(dyy dp || X | _|F : , . ,
: = k: - d”.\,*‘(l,n‘a:F, and dﬁ,.\/‘*(!sn‘a:’?,
_(!3; (13_1 X 2 ['_1 - 0 = =
The response amplitudes X4 and X2 can be determined using Cramer's rule:
F dp; dy F
T By dy\ _ dypFy-dpF; .y _da Bl _ dyFa-dyF
dyp dp| dydyy—dyd), Tody dp| dydy-dyd);
d:, d:: (13, (/:3

. Note: the determinant (characleristic equation) can be equated to zero (d,,d,, - d,,d,, = 0) to define the
system natural frequencies.

. Under forced excitation, when d,.d,, - d.,d,, = 0 the response amplitudes X, and X, —» =

. This defines resonance conditions (excitation frequency corresponds to either natural frequencies)

. Note: Due to coupling both masses will exhibit resonance when the excitation force is applied to only one
mass:
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UNIT: Il EZ3RIMT
Harmonic Forced Vibrations- Undamped

' A mass-spring assembly added to a single degree of freedom with a natural frequency m, tuned to the

forcing frequency , will act as a vibration absorber and reduce the vibration of the main mass to zero.

' Undamped vibration absorbers are designed so that the natural frequencies of the resulting system are
displaced away from the excitation frequency,

' The equations of motion of the main mass m, and the
auxiliary mass m, are. F., sin wi

I"’.'ll'l +k,.\" +k:(.\', —.l‘: )= I';) sinf ax )

ﬂl:.’\.’: +k:(."3 == J=1

Rearranging Machine (m,) —I-
mpX;+lkp+ k) xp=kaxy = Fysinfax) ()
)
ﬂi::\:zé‘k:.\':*k:.\'[:“ s Mt
Assuming harmonic solutions ks
xi(t)=X;sinfax) j=1.2 Isolator | Isolator
(ky/2) ; 1 (ky/2)
And substituting into the egns, of motion: : m, If
[ —rm iXpH k) + ko) X =k X5 ]sin( ax J=Fpsin( ax ) 2 i X0}
. :
- ) "1_7' /\'_’ + k.’/\'_’ - k_"-'\'l =) bR TEE T I E i dla s ngld base
Dynamic vibration
absorber
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UNIT: Il E3RIMT
Harmonic Forced Vibrations- Undamped

In matrix form:

-‘U:'"[.*.l"k,-*k:) —A: {.’\/I}—{F‘"}
—k > —6031113 +k A 0

Using Cramer’s rule to determine the response amplitudes Xqand X5 :
F, (,I: (I“ [“,

Xy Fy d  dyF;—-dpF, P dy F>  dyjF,-dyF

dyy dpl dydy—dad;s dyy dpp dydyy—dydy;
dy dj dy dy
Or
\ky~’m, | Fy oF
‘X/ = 3 n 3 1 and "\'.’ - 3 24 3 t )
\ky+ks—w m; }[ ky—@ my|—k> Vkyp+ k=@ my|| ks —@ my|—k3

. In order to minimise the amplitude of mass 1, the numerator of X, should be equated to zero which

produces:
2_K;
@ =-=
IH.»
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Harmonic Forced Vibrations- Undampec

If the original machine was operaling near resonance |
2. .2 _K
W ; w=
my

If the absorber is designed so that its natural frequency corresponds to the forcing frequency :

_’ "1 k,
W =-—*=
m, m

The amplitude of the machine (m4) atits original resonant frequency will be zero,

Since

. k k>
Ogp = L, o= |- and @)= |-+
ok m ms

The dynamic response (magnification factor) of the mainmass and the auxiliary mass (absorber) are :

w]

4\' l (\’ Y
and ==

(th
Oy (3 Oy 1 k2 \
k) w, 7 > j A | k (u, j w-. 7
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UNIT: 1l & RIMT
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Harmonic Forced Vibrations- Undamped Absorber

. The size of the auxiliary mass m, Is
governed by the allowable deflection X,.

*  These systems can be quite effective Without absorber

over a reasonable frequency band + 5 : / / '
o - With absorber I With absorber

.1 | \N /IV ¥
R B

. The new system has an added degree
of freedom hence two resonance
peaks. 12
. The system will pass thru the first 2] &
resonance during startup, it is essential o
that the run-up time is minimised. 8 - — + <
. Otherwise, introduce damping to )/ | \
prevent large vibrations of m, if the | ’
excitation frequency is likely to vary. 4 = 1 ~
. Atw=m, X,=0and X,= -k, §/k, = - ﬂ‘ :
-F /k, which shows thal the force 0 | 1 | 1
exerted by the absorber mass Is out of 06 07 0.8 0.9 1.0 1.1 1.2 1.
phase with (counteracts) the exciting
force which causes X, to reduce to —

Zero.

33
L=

£
I
—~51

»d




UNIT: Il EARIMT
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Harmonic Forced Vibrations- Undamped Absorber

Fo sin wt
. Harmonically forced vibrations - damped absorber l
Machine (m | ) T
xlr)
. Introducing a viscous damper produces the following eqns. L ks l:FJf 2
of motion: Isolator Isolator
id ; . 3 (k2 : ; k2
mxp+kpxy+ka(xp=x3 ) e k=% )= Fysinf ax ) ) ; m I . (Ky/2)
2 X [ X3 =X 2 X=X )=0 | :
msXs+hks(x>=x;)+cerfks—%;) : xa(1)’
Assuming harmonic solutions in the form : S, ’
- T T T i s
xXi(t)=X ;™ =1, 2 N e
fiieap J Dynamic vibration absorber

Yields the steady-state amplitudes:

-~ 2 . |
’|k1—w-l"$ +l(‘v(l)§
/k,
[IA, " "l,l(/n-(t) m,l-m,bw J+u | k- ‘m) - @’ m.,

; Xl ky +icrw
A= /| . 201
( ks =@ m, +ic,0|
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Harmonic Forced Vibrations- Damped Absorber

Using the following definitions :

Mass ratio: H=my m

Static deflection : o, =Fylk;
2

Square absorber natural frequency: @; =k m;

. 2 j
Square main mass natural frequency : @y =k;/m;

Natural freguency ratio : =0
Forced frequency ratio : g=w/w,
Critical damping constant : C.=2mw/ w,
Damping ratio : =e3/c,
The magnitude ratios can be wrillen as :
2 ) -\ :
X, (2g)" +|g”-f° |

N

d 7 J b V[ 2 o
Hurle’-(g?-1)(87- 17|

Ot (26g)°|&° - 1+ug’
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UNIT: 1] EARIMT

UNIVERSITY
Harmonic Forced Vibrations- Damped Absorber
X / (288)° +(g2- 1)
O \l 2g)’| & -1+ pg’| ; Huflg? (g -1 I'g"-_l"’:l}:
16
Lir 9 B
my 20
12—
xld 8——+—
oL
0.6 0.7
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Harmonic Forced Vibrations- Damped Absorber

. When damping is infinite, the two masses are rigidly coupled and the system behaves as an undamped single
DoF system with mass m, + m, and sliffness k,

. X, approaches «when{=0and [ =«

. The amplitude of the absorber mass is always greater that that of the main mass. Allow for large vibration
amplitudes and consider fatigue issues for design of absorber springs.

. X, will have a minimum

. All damping values produce curves which intersect at A and B

- The frequencies of A and B can be located by substituting the extreme conditions T = 0 and { = « into the
magnitude ratio equation.,

. It has been shown that vibration absorbers operate optimally when the ordinates of A and B are equal for which:
: / /
, =W, /@ W,
I I+u} 1 [+ms ny)

. Such systems are known as tuned vibration absorbers.
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