

MECHANICAL VIBRATIONS

Course Name: B.Tech-ME

Semester: 7th

Prepared by: Dr. Talwinder Singh Bedi

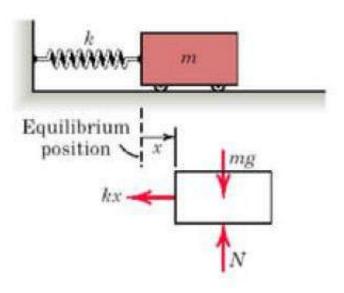
www.rimt.ac.in

Department of Mechanical Engineering

1

UNIT: II Single Degree of Freedom Systems RIMT Free Undamped Vibrations Single DOF

- Recall: Free vibrations → system given initial disturbance and oscillates free of external forces.
- Undamped: no decay of vibration amplitude
- Single DoF:
 - mass treated as rigid, limped (particle)
 - Elasticity idealised by single spring
 - only one natural frequency.
- The equation of motion can be derived using
 - Newton's second law of motion
 - D'Alembert's Principle,
 - The principle of virtual displacements and,
 - The principle of conservation of energy.



education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF

Using Newton's second law of motion to develop the equation of motion.

- 1. Select suitable coordinates
- 2. Establish (static) equilibrium position
- 3. Draw free-body-diagram of mass
- Use FBD to apply Newton's second law of motion: "Rate of change of momentum = applied force"

$$F(t) = \frac{d}{dt} \left(m \frac{dx(t)}{dt} \right)$$

As m is constant

$$F(t) = m \frac{d^2 x(t)}{dt^2} = m \ddot{x}$$

For rotational motion

$$M(t) = J\ddot{\theta}$$

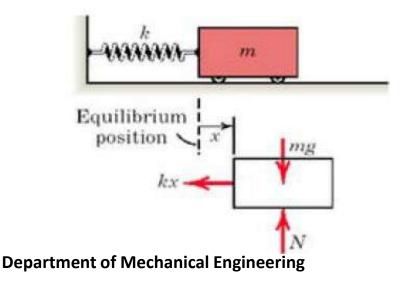
For the free, undamped single DoF system

$$F(t) = -kx = m\ddot{x}$$

or
$$m\ddot{x} + kx = 0$$

education for life

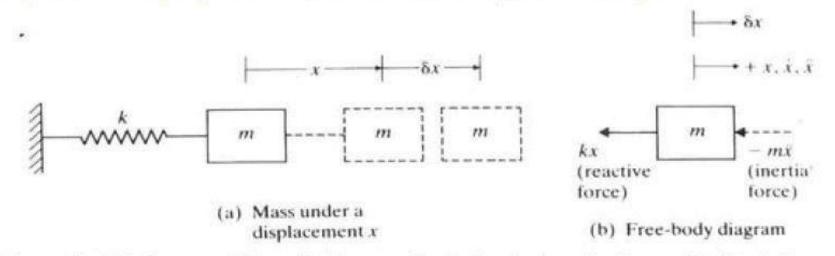
www.rimt.ac.in



Free Undamped Vibrations Single DOF

Principle of virtual displacements:

- "When a system in equilibrium under the influence of forces is given a virtual displacement. The total work done by the virtual forces = 0"
- Displacement is imaginary, infinitesimal, instantaneous and compatible with the system



 When a virtual displacement dx is applied, the sum of work done by the spring force and the inertia force are set to zero:

$$-(kx)\delta x - (m\ddot{x})\delta x = 0$$

Since dx ≠ 0 the equation of motion is written as:

$$kx + m\ddot{x} = 0$$

education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF

Principle of conservation of energy:

- No energy is lost due to friction or other energy-dissipating mechanisms.
- If no work is done by external forces, the system total energy = constant
- For mechanical vibratory systems:

$$KE + PE = cons \tan t$$

or
$$\frac{d}{dt}(KE + PE) = 0$$

Since

$$KE = \frac{1}{2}m\dot{x}^{2} \quad and \quad PE = \frac{1}{2}kx^{2}$$

then
$$\frac{d}{dt}\left(\frac{1}{2}m\dot{x}^{2} + \frac{1}{2}kx^{2}\right) = 0$$

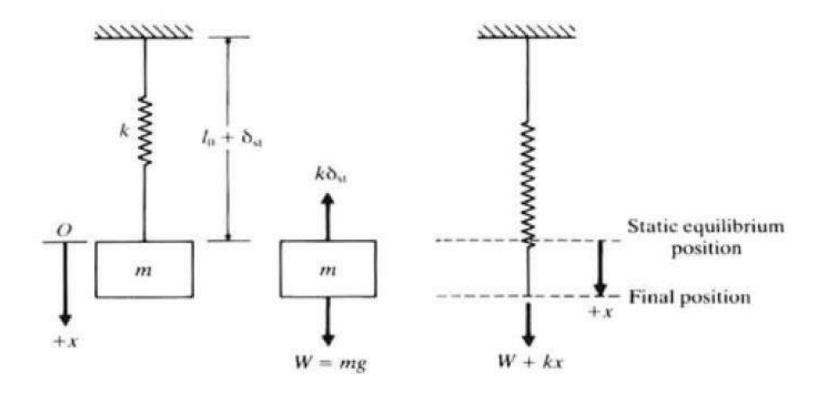
or
$$m\ddot{x} + kx = 0$$

education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF

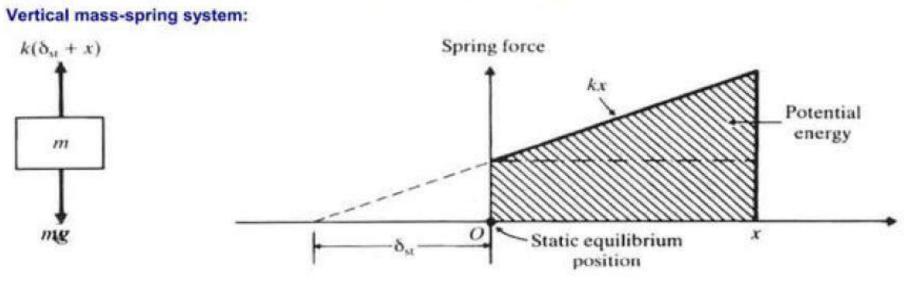
Vertical mass-spring system:



education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF



From the free body diagram:, using Newton's second law of motion:

$$m\ddot{x} = -k(x + \delta_{st}) + mg$$

since $k\delta_{st} = mg$
 $m\ddot{x} + kx = 0$

- Note that this is the same as the eqn. of motion for the horizontal mass-spring system
- ∀ ∴ if x is measured from the static equilibrium position, gravity (weight) can be ignored
- This can be also derived by the other three alternative methods.

education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF

- The solution to the differential eqn. of motion. .
- As we anticipate oscillatory motion, we may propose a solution in the form: ٠

$$\begin{aligned} x(t) &= A\cos(\omega_n t) + B\sin(\omega_n t) \\ or \\ x(t) &= Ae^{i\omega_n t} + Be^{-i\omega_n t} \\ alternatively, if we let s &= \pm i\omega_n \\ x(t) &= Ce^{\pm st} \end{aligned}$$

By substituting for x(t) in the eqn. of motion:
$$\begin{aligned} C(ms^2 + k) &= 0 \\ since c &= 0. \end{aligned}$$

$$C(ms^{2} + k) = 0$$

since $c \neq 0$,

$$ms^{2} + k = 0 \qquad \neg \ Characteristic \ equation$$

and

$$s = \pm i\omega_{n} = \pm \sqrt{\frac{k}{m}} \qquad \neg \ roots = eigenvalues$$

or

$$\omega_{n} = \sqrt{\frac{k}{m}}$$

Department of Mechanical Engineering

education for life

.

www.rimt.ac.in

al tillellt of wethanital Engineering

Free Undamped Vibrations Single DOF

- The solution to the differential eqn. of motion.
- Applying the initial conditions to the general solution: $x(t) = A\cos(\omega_n t) + B\sin(\omega_n t)$

 $x_{(t=0)} = A = x_0$ initial displacement $\dot{x}_{(t=0)} = B\omega_n = \dot{x}_0$ initial velocity

The solution becomes:

$$x(t) = x_0 \cos(\omega_n t) + \frac{\dot{x}_0}{\omega_n} \sin(\omega_n t)$$

if we let $A_0 = \left[x_0^2 + \left(\frac{\dot{x}_0}{\omega_n}\right)^2 \right]^{1/2}$ and $\phi = a \tan\left(\frac{x_0\omega_n}{\dot{x}_0}\right)$ then
 $x(t) = A_0 \sin(\omega_n t + \phi)$

- This describes motion of harmonic oscillator:
 - Symmetric about equilibrium position
 - Thru equilibrium: velocity is maximum & acceleration is zero
 - At peaks and valleys, velocity is zero and acceleration is maximum
 - $\forall \omega_n = \sqrt{(k/m)}$ is the natural frequency

education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF

Note: for vertical systems, the natural frequency can be written as:

$$\begin{split} & \omega_n = \sqrt{\frac{k}{m}} \\ & sin\,ce \quad k = \frac{mg}{\delta_{st}} \\ & \omega_n = \sqrt{\frac{g}{\delta_{st}}} \quad or \quad f_n = \frac{1}{2\pi} \sqrt{\frac{g}{\delta_{st}}} \end{split}$$

- Torsional vibration.
- Approach same as for translational system. Laboratory exercise.

education for life

www.rimt.ac.in

Free Undamped Vibrations Single DOF

- Compound pendulum.
- Given an initial angular displacement or velocity, system will oscillate due to gravitational acceleration.
- Assume rigid body → single DoF

Restoring torque:

 $mgd \sin \theta$

:. Equation of motion :

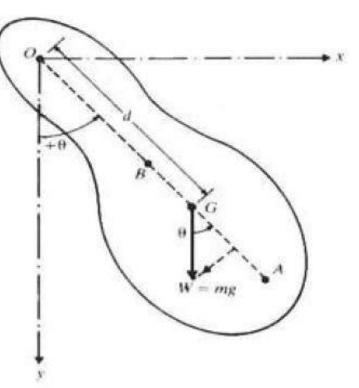
 $J_o \ddot{\theta} + mgd \sin \theta = 0 - nonlinear 2^{nd} order ODE$

Linearity is approximated if $\sin \theta \approx \theta$ *Therefore :*

$$J_o \ddot{\theta} + mgd\theta = 0$$

Natural frequency :

$$\omega_n = \sqrt{\frac{mgd}{J_o}}$$



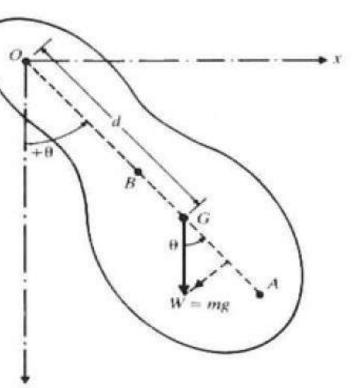
www.rimt.ac.in

Natural frequency :

$$\omega_{n} = \sqrt{\frac{mgd}{J_{o}}}$$
since for a simple pendulum

$$\omega_{n} = \sqrt{\frac{g}{l}}$$
Then, $l = \frac{J_{o}}{md}$ and since $J_{o} = mk_{o}^{2}$ then

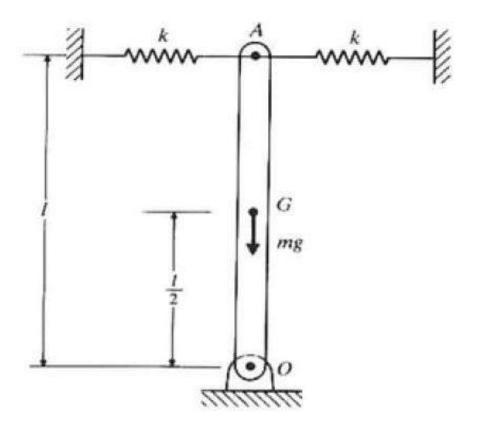
$$\omega_{n} = \sqrt{\frac{gd}{k_{o}^{2}}}$$
 and $l = \frac{k_{o}^{2}}{d}$
Applying the parallel axis theorem $k_{o}^{2} = k_{G}^{2} + d^{2}$
 $l = \frac{k_{G}^{2}}{d} + d$
Let $l = GA + d = OA$
 $\omega_{n} = \sqrt{\frac{g}{k_{o}^{2}/d}} = \sqrt{\frac{g}{l}} = \sqrt{\frac{g}{OA}}$
The location $A \left(GA = \frac{k_{G}^{2}}{d} + \frac{1}{2}\right)$ is the "centre of percussion"



education for life

www.rimt.ac.in

- Stability.
- Some systems may have inherent instability



www.rimt.ac.in

Department of Mechanical Engineering

education for life

- Stability.
- Some systems may have inherent instability
- When the bar is deflected by θ,

The spring force is : $2kl \sin \theta$

The gravitational force thru G is :

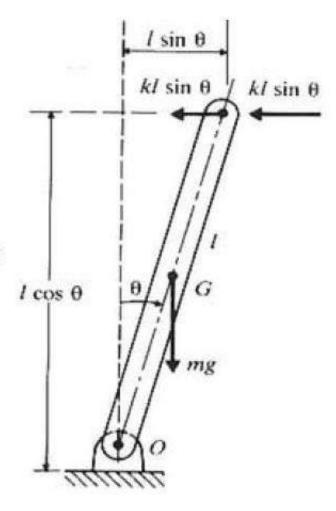
mg

The inertial moment about O due to the angular acceleration $\hat{\theta}$ is :

$$J_o \ddot{\theta} = \frac{ml^2}{3} \ddot{\theta}$$

The eqn. of motion is written as :

$$\frac{ml^2}{3}\ddot{\theta} + (2kl\sin\theta)l\cos\theta - mg\frac{l}{2}\sin\theta = 0$$



education for life

www.rimt.ac.in

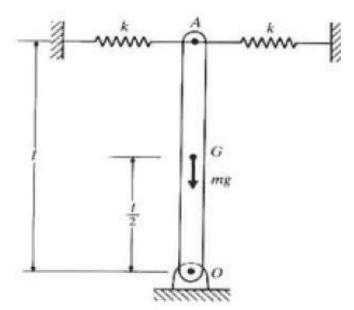
For small oscillations, $\sin \theta = \theta$ and $\cos \theta = 1$. Therefore

$$\frac{ml^2}{3}\theta + 2kl^2\theta - \frac{mgl}{2}\theta = 0$$
or
$$\ddot{\theta} + \left(\frac{12kl^2 - 3mgl}{2ml^2}\right) = 0$$

The solution to the eqn. of motion depends of the sign of ()

 If () >0, the resulting motion is oscillatory (simple harmonic) with a natural frequency

$$\omega_{n=}\sqrt{\left(\frac{12kl^2-3mgl}{2ml^2}\right)^{\frac{1}{2}}}$$



education for life

www.rimt.ac.in

$$\ddot{\theta} + \left(\frac{12kl^2 - 3mgl}{2ml^2}\right) = 0$$

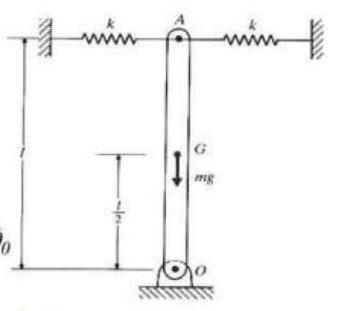
(2) If () =0, the eqn. of motion reduces to:

 $\ddot{\theta} = 0$

The solution is obtained by integrating twice yielding : $\theta(t) = C_1 t + C_2$ Applying initial conditions $\theta(t=0) = \theta_0$ and $\dot{\theta}(t=0) = \dot{\theta}_0$

 $\theta(t) = \dot{\theta}_0 t + \theta_0$

Which shows a linear increase of angular displ. at constant velocity. And if $\dot{\theta}_0 = 0$ the bar remains in static equilibrium at $\theta(t) = \theta_0$



education for life

www.rimt.ac.in

$$\ddot{\theta} + \left(\frac{12kl^2 - 3mgl}{2ml^2}\right) = 0$$

(3) If () < 0, we define:

$$\alpha = -\left(\frac{12kl^2 - 3mgl}{2ml^2}\right) = \left(\frac{3mgl - 12kl^2}{2ml^2}\right)$$

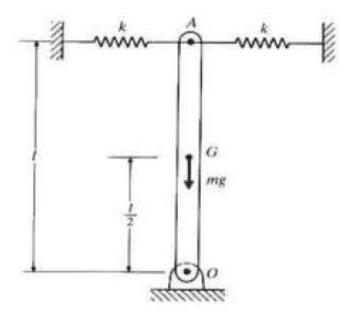
The solution of the eq. of motion is :

$$\theta(t) = B_1 e^{\alpha t} + B_2 e^{-\alpha}$$

Applying initial conditions $\theta(t=0) = \theta_0$ and $\dot{\theta}(t=0) = \dot{\theta}_0$

$$\theta(t) = \frac{I}{2\alpha} \Big[\left(\alpha \theta_0 + \dot{\theta}_0 \right) e^{\alpha t} + \left(\alpha \theta_0 - \dot{\theta}_0 \right) e^{-\alpha t}$$

which shows that $\theta(t)$ increases exponentially with time and is therefore unstable because the restoring moment (springs) is less than the non – restoring moment due to gravity.



education for life

www.rimt.ac.in

- Rayleigh's Energy method to determine natural frequency
- Recall: Principle of conservation of energy:

$$T_I + U_I = T_2 + U_2$$

Where T₁ and U₁ represent the energy components at the time when the kinetic energy is at its maximum
 (.:. U₁=0) and T₂ and U₂ the energy components at the time when the potential energy is at its maximum
 (.:. T₂=0)

$$T_l + \theta = \theta + U_2$$

For harmonic motion

$$T_{max} = U_{max}$$

www.rimt.ac.in

- Rayleigh's Energy method to determine natural frequency: Application example:
- Find minimum length of mercury u-tube manometer tube so that f_n of fluid column < 2 Hz.
- Determine U_{max} and T_{max}:
- Umax = potential energy of raised fluid column + potential energy of depressed fluid column.

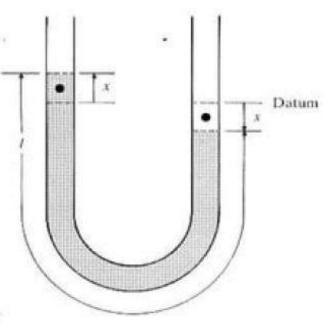
$$U = mg \frac{x}{2}\Big|_{raised} + mg \frac{x}{2}\Big|_{depressed}$$
$$= (Ax\gamma) \frac{x}{2}\Big|_{raised} + (Ax\gamma) \frac{x}{2}\Big|_{depressed}$$

 $= A\gamma x^*$

A: cross sectional area and γ : specific weight of mercury

Kinetic energy:

$$T = \frac{l}{2} (mass of mercury col) vel^{2}$$
$$= \frac{l}{2} \left(\frac{Al\gamma}{g}\right) \dot{x}^{2}$$



education for life

www.rimt.ac.in

- Rayleigh's Energy method to determine natural frequency: Application example:
- If we assume harmonic motion:

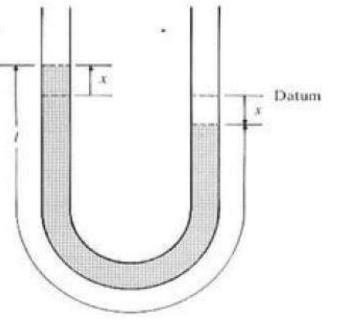
 $x(t) = X \cos(2\pi f_n t) \quad \text{where } X \text{ is the max.displacement}$ $\dot{x}(t) = 2\pi f_n X \sin(2\pi f_n t) \quad \text{where } 2\pi f_n X \text{ is the max.velocity}$

Substituting for the maximum displacement and velocity:

$$U_{max} = A\gamma X^{2} \quad and \quad T_{max} = \frac{l}{2} \left(\frac{Al\gamma}{g}\right) (2\pi f_{n})^{2} X^{2}$$
$$U_{max} = T_{max} \quad \therefore \quad A\gamma X^{2} = \frac{l}{2} \left(\frac{Al\gamma}{g}\right) (2\pi f_{n})^{2} X^{2}$$
$$f_{n} = \frac{l}{2\pi} \sqrt{\left(\frac{2g}{l}\right)}$$

Minimum length of column:

$$f_n = \frac{1}{2\pi} \sqrt{\left(\frac{2g}{l}\right)} \le 1.5 \text{ Hz}$$
$$l \ge 0.221 \text{ m}$$



education for life

www.rimt.ac.in

Recall: viscous damping force « velocity:

 $F = -c\dot{x}$ $c = damping \ constant \ or \ coefficient [Ns/m]$

Applying Newton's second law of motion to obtain the eqn. of motion :

 $m\ddot{x} = -c\dot{x} - kx$ or $m\ddot{x} + c\dot{x} + kx = 0$

If the solution is assumed to take the form :

 $x(t) = Ce^{st}$ where $s = \pm i\omega_n$

then: $\dot{x}(t) = sCe^{st}$ and $\ddot{x}(t) = s^2Ce^{st}$

Substituting for x, x and x in the eqn. of motion

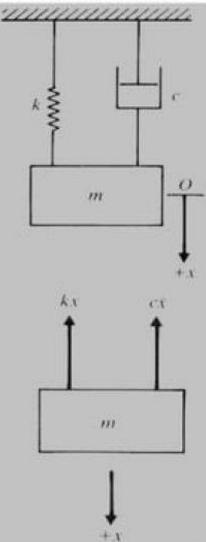
 $ms^2 + cs + k = 0$

The root of the characteristic eqn. are :

$$s_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)^2}$$

The two solutions are :

$$x_1(t) = C_1 e^{s_1 t}$$
 and $x_2(t) = C_2 e^{s_2 t}$



education for life

www.rimt.ac.in

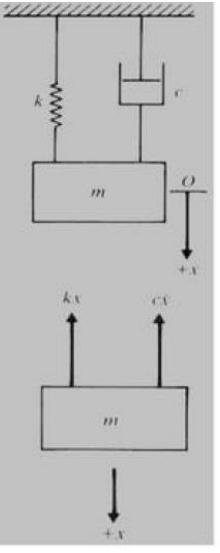
The general solution to the Eqn. Of motion is:

$$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t}$$

or

$$x(t) = C_1 e^{\left\{-\frac{c}{2m} + \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}\right\}_t} + C_2 e^{\left\{-\frac{c}{2m} - \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)}\right\}_t}$$

where C_1 and C_2 are arbitrary constants det ermined from the initial conditions.



education for life

www.rimt.ac.in

Critical damping (c_): value of c for which the radical in the general solution is zero:

$$\left(\frac{c_c}{2m}\right)^2 - \left(\frac{k}{m}\right) = 0$$
 or $c_c = 2m\sqrt{\frac{k}{m}} = 2m\omega_n = 2\sqrt{km}$

Damping ratio (ζ): damping coefficient : critical damping coefficient.

$$\zeta = \frac{c}{c_c}$$
 or $\frac{c}{2m} = \frac{c}{c_c}\frac{c_c}{2m} = \zeta \omega_n$

The roots can be re - written :

$$s_{1,2} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \left(\frac{k}{m}\right)^2} = \left(-\zeta \pm \sqrt{\zeta^2 - 1}\right)\omega_n$$

And the solution becomes :

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - 1}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}$$

The response x(t) depends on the roots s₁ and s₂ → the behaviour of the system is dependent on the damping ratio ζ.

education for life

www.rimt.ac.in

 $x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - I}\right)\omega_n t} + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - I}\right)\omega_n t}$

When ζ <1, the system is underdamped. (ζ²-1) is negative and the roots can be written as:

$$s_1 = \left(-\zeta + i\sqrt{1-\zeta^2}\right)\omega_n$$
 and $s_2 = \left(-\zeta - i\sqrt{1-\zeta^2}\right)\omega_n$

And the solution becomes :

$$\begin{aligned} x(t) &= C_{I}e^{\left(-\zeta + i\sqrt{1-\zeta^{2}}\right)}\omega_{n}t} + C_{2}e^{\left(-\zeta - i\sqrt{1-\zeta^{2}}\right)}\omega_{n}t} \\ x(t) &= e^{-\zeta\omega_{n}t}\left\{C_{I}e^{\left(i\sqrt{1-\zeta^{2}}\right)}\omega_{n}t} + C_{2}e^{\left(-i\sqrt{1-\zeta^{2}}\right)}\omega_{n}t}\right\} \\ x(t) &= e^{-\zeta\omega_{n}t}\left[\left(C_{I} + C_{2}\right)\cos\left(\sqrt{1-\zeta^{2}}\omega_{n}t\right) + i\left(C_{I} - C_{2}\right)\sin\left(\sqrt{1-\zeta^{2}}\omega_{n}t\right)\right] \\ x(t) &= e^{-\zeta\omega_{n}t}\left\{C_{I}\cos\left(\sqrt{1-\zeta^{2}}\omega_{n}t\right) + C_{2}'\sin\left(\sqrt{1-\zeta^{2}}\omega_{n}t\right)\right\} \\ x(t) &= Xe^{-\zeta\omega_{n}t}\sin\left(\sqrt{1-\zeta^{2}}\omega_{n}t + \phi\right) \quad \text{or} \quad x(t) = X_{0}e^{-\zeta\omega_{n}t}\cos\left(\sqrt{1-\zeta^{2}}\omega_{n}t - \phi_{0}\right) \end{aligned}$$

Where C'₁, C'₂; X, ϕ and X_o, ϕ_o are arbitrary constant determined from initial conditions.

education for life

www.rimt.ac.in

$$x(t) = e^{-\zeta \omega_n t} \left\{ C_1' \cos\left(\sqrt{1-\zeta^2} \omega_n t\right) + C_2' \sin\left(\sqrt{1-\zeta^2} \omega_n t\right) \right\}$$

· For the initial conditions:

$$x(t=0) = x_0$$
 and $\dot{x}(t=0) = \dot{x}_0$

Then

$$C'_{1} = x_{0}$$
 and $C'_{2} = \frac{\dot{x}_{0} + \zeta \omega_{n} x_{0}}{\sqrt{1 - \zeta^{2}} \omega_{n}}$

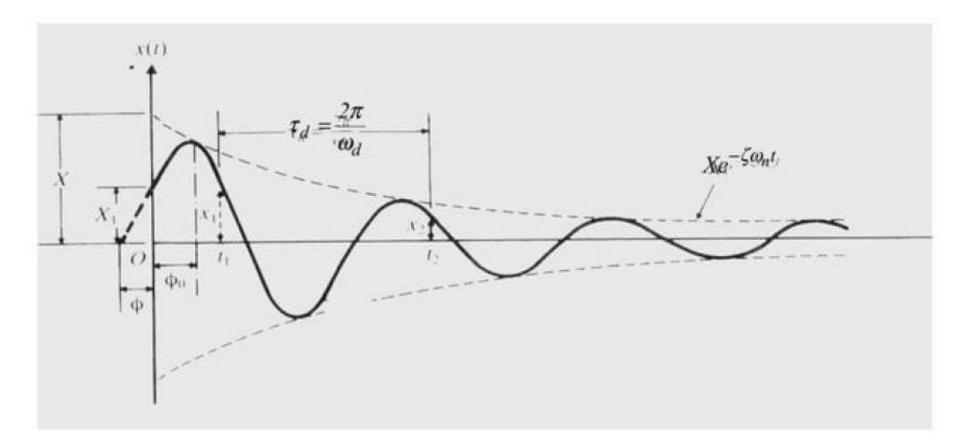
Therefore the solution becomes

$$x(t) = e^{-\zeta \omega_n t} \left\{ x_0 \cos\left(\sqrt{I - \zeta^2} \omega_n t\right) + \frac{\dot{x}_0 + \zeta \omega_n x_0}{\sqrt{I - \zeta^2} \omega_n} \sin\left(\sqrt{I - \zeta^2} \omega_n t\right) \right\}$$

 This represents a decaying (damped) harmonic motion with angular frequency √(1-ζ²)ω_n also known as the damped natural frequency. The factor e⁽¹⁾ causes the exponential decay.

education for life

www.rimt.ac.in



Exponentially decaying harmonic – free SDoF vibration with viscous damping . Underdamped oscillatory motion and has important engineering applications.

education for life

www.rimt.ac.in

$$x(t) = Xe^{-\zeta\omega_n t} \sin\left(\sqrt{1-\zeta^2}\omega_n t + \phi\right) \quad or \quad x(t) = X_0 e^{-\zeta\omega_n t} \cos\left(\sqrt{1-\zeta^2}\omega_n t - \phi_0\right)$$

The constants (X,ϕ) and (X_0,ϕ_0) representing the magnitude and phase become :

$$X = X_0 = \sqrt{\left(C'_{I}\right)^2 + \left(C'_{2}\right)^2}$$

$$\phi = a \tan\left(\frac{C'_{I}}{C'_{2}}\right) \quad and \quad \phi_0 = a \tan\left(-\frac{C'_{2}}{C'_{I}}\right)$$

education for life

www.rimt.ac.in

When ζ = 1, c=c_c, system is critically damped and the two roots to the eqn. of motion become:

$$s_1 = s_2 = -\frac{c_c}{2m} = -\omega_n$$

and solution is

 $x(t) = (C_1 + C_2 t)e^{-\omega_n t}$

Applying the initial conditions $x(t=0) = x_0$ and $\dot{x}(t=0) = \dot{x}_0$ yields

 $C_1 = x_0$ $C_2 = \dot{x}_0 + \omega_n x_0$ The solution becomes :

 $x(t) = \left[x_0 + (\dot{x}_0 + \omega_n x_0)t\right]e^{-\omega_n t}$

• As t→∞, the exponential term diminished toward zero and depicts aperiodic motion

education for life

www.rimt.ac.in

When ζ > 1, c>c_c, system is overdamped and the two roots to the eqn. of motion are real and negative:

$$\begin{split} s_{I} &= \left(-\zeta + \sqrt{\zeta^{2} - I}\right) \omega_{n} < 0 \\ s_{2} &= \left(-\zeta - \sqrt{\zeta^{2} - I}\right) \omega_{n} < 0 \end{split}$$

with $s_2 = s_1$ and the initial conditions $x(t=0) = x_0$ and $\dot{x}(t=0) = \dot{x}_0$ the solution becomes :

$$x(t) = C_1 e^{\left(-\zeta + \sqrt{\zeta^2 - t}\right)} \phi_n t + C_2 e^{\left(-\zeta - \sqrt{\zeta^2 - t}\right)} \phi_n t$$

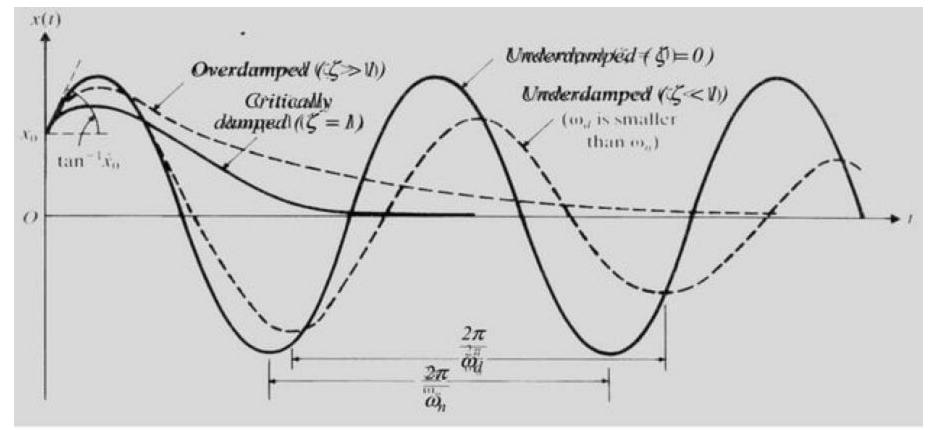
where

$$C_{1} = \frac{x_{0}\omega_{n}\left(-\zeta + \sqrt{\zeta^{2} - 1}\right) + \dot{x}_{0}}{2\omega_{n}\sqrt{\zeta^{2} - 1}}$$
$$C_{2} = \frac{-x_{0}\omega_{n}\left(-\zeta - \sqrt{\zeta^{2} - 1}\right) - \dot{x}_{0}}{2\omega_{n}\sqrt{\zeta^{2} - 1}}$$

Which shows aperiodic motion which diminishes exponentially with time.

education for life

www.rimt.ac.in



Critically damped systems have lowest required damping for aperiodic motion and mass returns to equilibrium position in shortest possible time.

education for life

www.rimt.ac.in

- Logarithmic decrement: Natural logarithm of ratio of two successive peaks (or troughs) in an exponentially decaying harmonic response.
- Represents the rate of decay
- Used to determine damping constant from experimental data.
- Using the solution for underdamped systems:

$$\frac{x_1}{x_2} = \frac{X_0 e^{-\zeta \omega_n t_1} \cos(\omega_d t_1 - \phi_0)}{X_0 e^{-\zeta \omega_n t_2} \cos(\omega_d t_2 - \phi_0)}$$

Let
$$t_2 = t_1 + \tau_d = t_1 + \frac{2\pi}{\omega_d}$$
 then

$$\cos(\omega_d t_2 - \phi_0) = \cos(2\pi + \omega_d t_1 - \phi_0) = \cos(\omega_d t_1 - \phi_0)$$

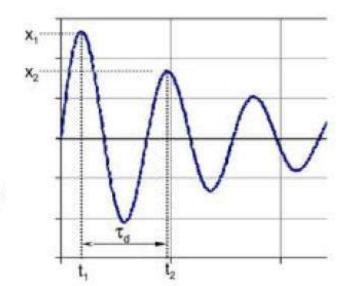
and

$$\frac{x_I}{x_2} = \frac{e^{-\zeta \omega_n t_I}}{e^{-\zeta \omega_n (t_I + \tau_d)}} = e^{\zeta \omega_n \tau_d}$$

Applying the natural In on both sides,

the log arithmic decrement δ is obtained :

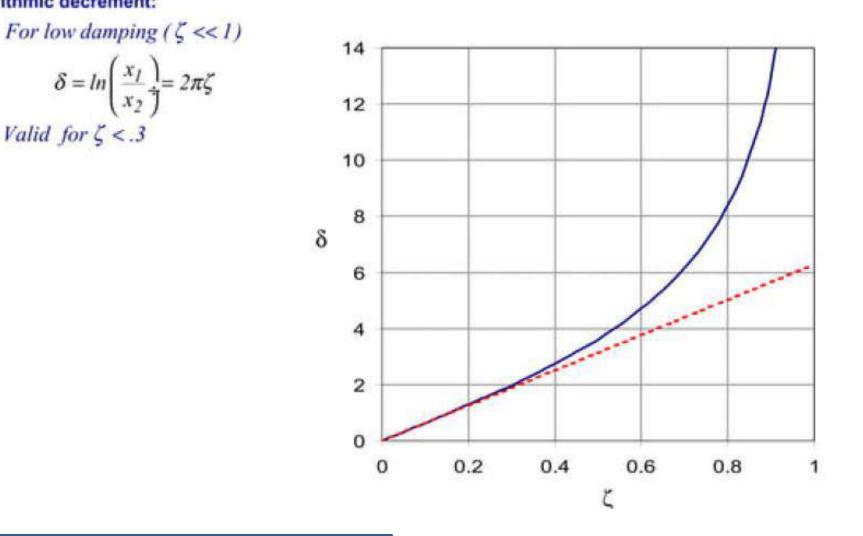
$$\delta = ln \left(\frac{x_1}{x_2} \right) = \zeta \omega_n \tau_d = \zeta \omega_n \frac{2\pi}{\sqrt{1 - \zeta^2}} \omega_n = \frac{2\pi\zeta}{\sqrt{1 - \zeta^2}} = \frac{2\pi\zeta}{\omega_d}$$



education for life

www.rimt.ac.in

Valid for $\zeta < .3$

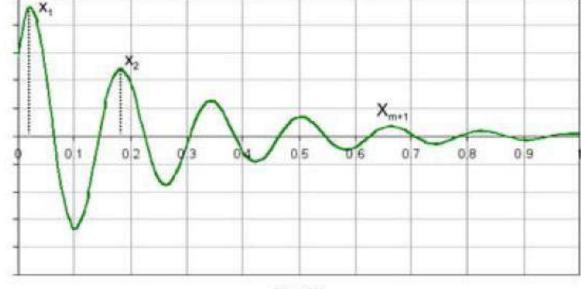


education for life

www.rimt.ac.in

- Logarithmic decrement after n cycles:
- Since the period of oscillation is constant: $\frac{x_1}{x_{m+1}} = \frac{x_1}{x_2} \frac{x_2}{x_3} \frac{x_3}{x_4} \dots \frac{x_m}{x_{m+1}}$

Since $\frac{x_j}{x_{j+1}} = e^{\zeta \omega_n \tau_d}$ then $\frac{x_l}{x_{m+1}} = \left(e^{\zeta \omega_n \tau_d}\right)^m = e^{m\zeta \omega_n \tau_d}$



Time [s]

The log arithmic decrement can therefore be obtained from a number m of successive decaying oscillations

$$\delta = \frac{1}{m} ln \left(\frac{x_l}{x_{m+l}} \right)$$

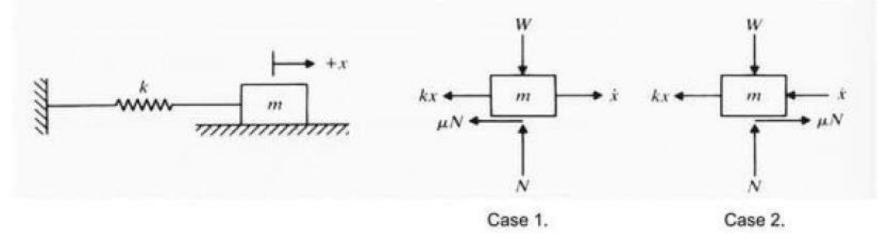
education for life

www.rimt.ac.in

- Coulomb or dry friction dampers are simple and convenient
- Occurs when components slide / rub
- Force proportional to normal force:

 $F = \mu N$ $F = \mu mg$ for free – s tan ding systems where μ is the coefficient of friction.

- Force acts in opposite direction to velocity and is independent of displacement and velocity.
- Consider SDOF system with dry friction:



www.rimt.ac.in

Department of Mechanical Engineering

education for life

- Case 1: Mass moves from left to right. x = positive and x' is positive or x = negative and x' is positive.
- The eqn. of motion is:

 $m\ddot{x} = -kx - \mu N$ or $m\ddot{x} + kx = -\mu N$ $\neg 2^{nd}$ order homogeneous DE For which the general solution is :

$$x(t) = A_1 \cos(\omega_n t) + A_2 \sin(\omega_n t) - \frac{\mu N}{k} \qquad (1)$$

where the frequency of vibration ω_n is $\sqrt{\frac{k}{m}}$ and A_1 and A_2 are constants dependent on the initial conditions of this portion of the cycle.

- Case 2: Mass moves from right to left. x = positive and x' is negative or x = negative and x' is negative.
- The eqn. of motion is:

 $m\ddot{x} = -kx + \mu N$ or $m\ddot{x} + kx = \mu N$

For which the general solution is :

$$x(t) = A_3 \cos(\omega_n t) + A_4 \sin(\omega_n t) + \frac{\mu N}{k}$$
(2)

where the frequency of vibration ω_n is again $\sqrt{\frac{k}{m}}$ and A_3 and A_4 are constants dependent

on the initial conditions of this portion of the cycle.

education for life

www.rimt.ac.in

- The term μN/k [m] is a constant representing the virtual displacement of the spring k under force μN. The equilibrium position oscillates between +μN/k and -μN/k 1 for each harmonic half cycle of motion.
 x(t)
 - Xo (1), 0. 0 2π $\frac{\mu N}{k}$ (1), (D, $\left(x_0 - \frac{2\mu N}{L}\right)$

www.rimt.ac.in

To find a more specific solution to the eqn. of motion we apply the simple initial conditions:

 $x(t=0) = x_0$ and $\dot{x}(t=0) = \dot{x}_0$

The motion starts from the extreme right (ie. velocity is zero) Substituting int o

$$x(t) = A_3 \cos(\omega_n t) + A_4 \sin(\omega_n t) + \frac{\mu N}{k} \qquad (2)$$

and

$$\dot{x}(t) = -A_3 \omega_n \sin(\omega_n t) + A_4 \omega_n \cos(\omega_n t) + 0$$

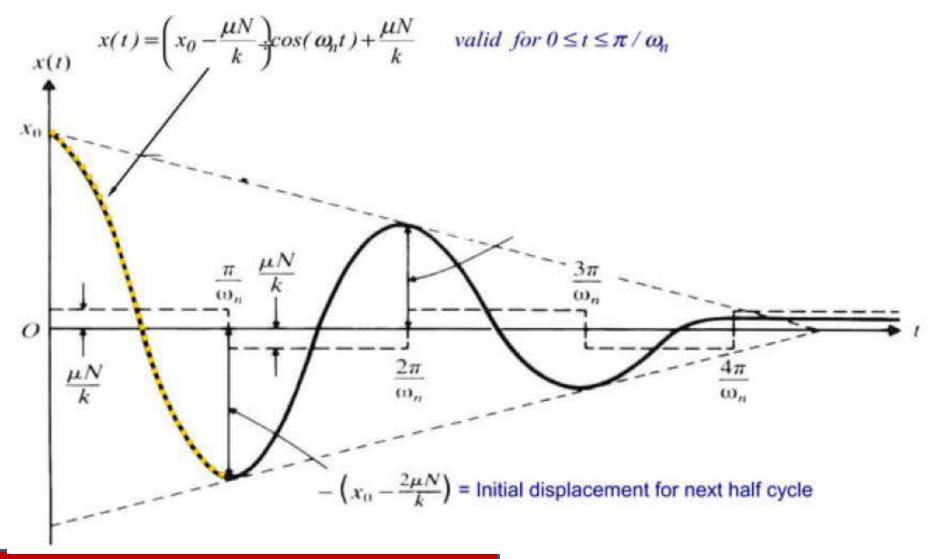
gives

$$A_{3} = x_{0} - \frac{\mu N}{k} \quad and \quad A_{4} = 0$$

Eqn.(2) becomes
$$x(t) = \left(x_{0} - \frac{\mu N}{k}\right) \cos(\omega_{n}t) + \frac{\mu N}{k} \quad (2a) \quad valid for \ 0 \le t \le \pi / \omega_{n}$$

education for life

www.rimt.ac.in



www.rimt.ac.in

The displacement at π/ω_n becomes the initial displacement for the next half cycle, x₁.

$$-x_{I} = x \left(t = \frac{\pi}{\omega_{n}} \right) = \left(x_{0} - \frac{\mu N}{k} \right) \cos(\pi) + \frac{\mu N}{k} = -\left(x_{0} - \frac{2\mu N}{k} \right)$$

and the initial velocity $\dot{x}(t=0)$ is $=\dot{x}\left(t=\frac{\pi}{\omega_n}\right)$ in eqn (2a)

Substituting these initial conditions int o eqn.(1)

$$x(t) = A_1 \cos(\omega_n t) + A_2 \sin(\omega_n t) - \frac{\mu N}{k} \qquad (1)$$

and its derivative

$$\dot{x}(t) = -\omega_n A_1 \sin(\omega_n t) + \omega_n A_2 \cos(\omega_n t)$$

gives

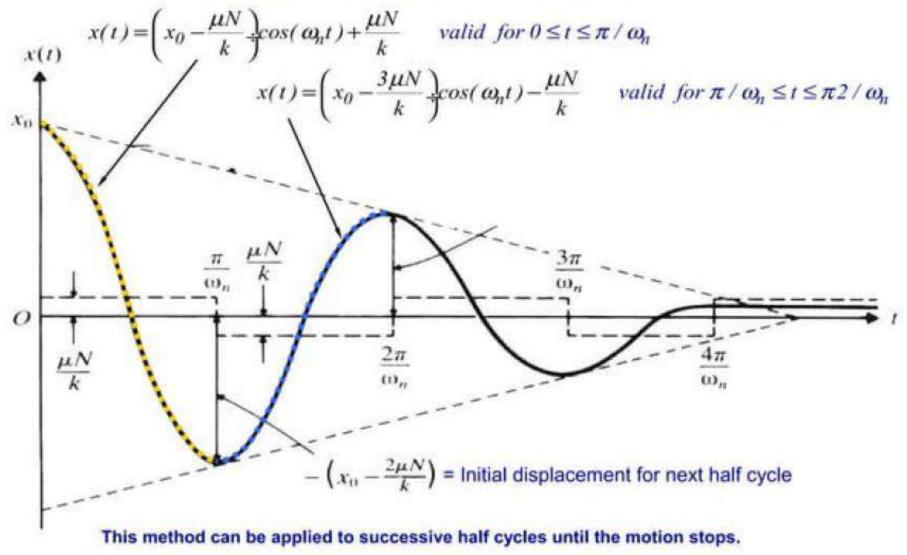
$$A_1 = x_0 - \frac{3\mu N}{k} \quad and \quad A_2 = 0$$

such that eqn.(1) becomes :

$$x(t) = \left(x_0 - \frac{3\mu N}{k}\right) \cos(\omega_n t) - \frac{\mu N}{k} \quad (1a) \quad \text{valid for } \pi / \omega_n \le t \le \pi 2 / \omega_n$$

education for life

www.rimt.ac.in



education for life

www.rimt.ac.in

Important features of Coulomb damping:

- 1. The equation of motion is nonlinear (cf. linear for viscous damping)
- Coulomb damping <u>does not</u> alter the system's natural frequency (cf. damped natural frequency for viscous damping).
- 3. The motion is always periodic (cf. overdamped for viscous systems)
- 4. Amplitude reduces linearly (cf. exponential decay for viscous systems)
- System eventually comes to rest number of vibration cycles finite (cf. sustained vibration with viscous damping)
- The final position is the permanent displacement (not equilibrium) equivalent to the friction force (cf. approaches zero for viscous systems)